アリゾナ大学(アメリカ)滞在記
石川 勲 (数学系・博士課程2年)
今回参加したArizona Winter School 2016の基本的な1日のスケジュールは, 日中のLectureと夜のWorking sessionの2つで構成されていた. Lectureは, 副題 "Analytic Methods in Arithmetic Geometry"の通り, 数論の解析的手法による研究について専門家らが入門的な概念や動機から最先端の研究結果やいたるまでの講義を5日かけて行うものであった. Working Sessionは8-10人程度ずつのグループに分かれて作業を行うプログラムであった. 各講義ごとにProject, Studyの2つのグループが用意されており, さらにProbrem Sessionという講義に関連する演習問題を大量に解いて勉強をするグループが2つ用意されていた.
講義を通して, これからの研究していく上で非常に有益なインスピレーションを受けることができた. トピック自体は私自身の専門からはいくらか遠く, 初めて聞く結果や手法が多くあった. 一つ得られた重要な知見として, 個々の数学的な現象に対しては, 予想はあっても複雑で分かりにくいものが, それらをまとめ合わせて全体的な動き観察するとその複雑さが穏やかになって性質が良くなり, それ自身が非常に面白い構造や振る舞いがあることを証明できたり, また, 予想に対してアプローチができたりするということがある.
Working Sessionはより実践的であり, そして, 講義内容に囚われないでその分野について議論することができた. 私は前半はHelfgot氏のStudyグループに参加しており, 後半はSutherland氏のProjectグループに参加していた. Helfgot氏の講演は使う道具が初等的である分, 証明は非常に技巧的であり, 初見ではその証明のアイデアの源泉がくみ取れないことが多かった. しかし, Studyグループのリーダーと納得いくまで議論することができ, 証明の組み立てや証明に至る背景等を学ぶことができた. さらに, 講義では時間の関係で触れられなかった話題についても話を聞くことができ, 特に, この分野では私の専門である保型形式を応用して得られる結果があることを聞き, 参考文献等を知ることができたのは今後の研究の幅を広げる上で有益な情報であった.